
SimuPy Documentation
Release 1.0.0

Benjamin W. L. Margolis

Dec 13, 2018

Contents

1 SimuPy 3
1.1 Installation . 4
1.2 Contributing . 5

2 Mathematical Formulation 7

3 API Documentation 9
3.1 block_diagram module . 10
3.2 systems module . 12
3.3 utils module . 15
3.4 symbolic systems module . 16
3.5 discontinuities module . 17
3.6 array module . 20
3.7 matrices module . 20
3.8 symbolic utils module . 21

Python Module Index 23

i

ii

SimuPy Documentation, Release 1.0.0

A Python framework for modeling and simulating dynamical systems.

Contents 1

SimuPy Documentation, Release 1.0.0

2 Contents

CHAPTER 1

SimuPy

SimuPy is a framework for simulating interconnected dynamical system models and provides an open source, python-
based tool that can be used in model- and system- based design and simulation workflows. Dynamical system models
can be specified as an object with the interface described in the API Documentation. Models can also be constructed
using symbolic expressions, as in

from sympy.physics.mechanics import dynamicsymbols
from sympy.tensor.array import Array
from simupy.systems.symbolic import DynamicalSystem

x = x1, x2, x3 = Array(dynamicsymbols('x1:4'))
u = dynamicsymbols('u')
sys = DynamicalSystem(Array([-x1+x2-x3, -x1*x2-x2+u, -x1+u]), x, u)

which will automatically create callable functions for the state equations, output equations, and jacobians. By default,
the code generator uses a wrapper for sympy.lambdify. You can change it by passing the system initialization
arguments code_generator (the function) and additional keyword arguments to the generator in a dictionary
code_generator_args. You can change the defaults for future systems by changing the module variables

import simupy.systems.symbolic
simupy.systems.symbolic.DEFAULT_CODE_GENERATOR = your_code_generator_function
simupy.systems.symbolic.DEFAULT_CODE_GENERATOR_ARGS = {'extra_arg': value}

A number of helper classes/functions exist to simplify the construction of models. For example, a linear feedback
controller can be defined as

from simupy.systems import LTISystem
ctrl = LTISystem([[1.73992128, 0.99212953, -2.98819041]])

The gains in the example come from the infinite horizon LQR based on the system linearized about the origin. A block
diagram of the system under feedback control can be constructed

from simupy.block_diagram import BlockDiagram
BD = BlockDiagram(sys, ctrl)

(continues on next page)

3

https://pypi.python.org/pypi/simupy
https://simupy.readthedocs.io/en/latest/
https://travis-ci.org/simupy/simupy
https://codecov.io/gh/simupy/simupy

SimuPy Documentation, Release 1.0.0

(continued from previous page)

BD.connect(sys, ctrl) # connect the current state to the feedback controller
BD.connect(ctrl, sys) # connect the controlled input to the system

Initial conditions for systems with non-zero dimensional state can be defined (it defaults to zeros of the appropriate
dimension) and the interconnected systems can be simulated with the BlockDiagram’s simulate method,

sys.initial_condition = [5, -3, 1]
res = BD.simulate(10)

which uses scipy.integrate.ode as the default solver for the initial-valued problem. The results are an instance
of the SimulationResult class, with array attributes t, x, y, and e, holding time, state, output, and event values
for each integrator time step. The first axis indexes the time step. For x, y, and e, the second axis indexes the
individual signal components, ordered first by the order each system was added to the block diagram then according
to the system state and output specification. The simulation defaults to the dopri5 solver with dense output, but a
different integrator_class and integrator_options options can be used as long as it supports a subset
of the scipy.integrate.ode API. The default values used for future simulations can be changed following the
pattern for the symbolic code generator options.

A number of utilities for constructing and manipulating systems and the simulation results are also included:

• process_vector_args and lambdify_with_vector_args from simupy.utils.symbolic
are helpers for code generation using sympy.lambdify

• simupy.utils.callable_from_trajectory is a simple wrapper for making polynomial spline inter-
polators using scipy.interpolate.splprep

• simupy.matrices includes tools for constructing (vector) systems using matrix expressions and re-
wrapping the results into matrix form

• simupy.systems.SystemFromCallable is a helper for converting a function to a state-less system
(typically a controller) to simulate

• MemorylessSystem and LTISystem are subclasses to more quickly create these types of systems

• SwitchedSystem is used to construct systems with discontinuities, defined by zero-crossings of the
event_equation_function output.

The examples subdirectory includes a number of worked problems. The documentation and docstrings are also avail-
able for reference.

1.1 Installation

SimuPy is pip installable

$ pip install simupy

SimuPy has been tested locally against

• Python >= 3.6

• NumPy >= 1.11

• SciPy >= 0.18

• SymPy >= 1.0

4 Chapter 1. SimuPy

http://numpy.scipy.org
http://www.scipy.org/scipylib/index.html
http://sympy.org

SimuPy Documentation, Release 1.0.0

but tests on Travis may run with newer versions. Much of the functionality works without SymPy, so installation does
not require it. The examples use matplotlib to visualize the results. Testing uses pytest. The documents are built with
Sphinx == 1.6.3.

1.2 Contributing

1. To discuss problems or feature requests, file an issue. For bugs, please include as much information as possible,
including operating system, python version, and version of all dependencies.

2. To contribute, make a pull request. Contributions should include tests for any new features/bug fixes and follow
best practices including PEP8, etc.

1.2. Contributing 5

http://matplotlib.org
https://docs.pytest.org/en/latest/
http://sphinx-doc.org/

SimuPy Documentation, Release 1.0.0

6 Chapter 1. SimuPy

CHAPTER 2

Mathematical Formulation

SimuPy assumes systems have no direct feedthrough between inputs and outputs; this discpline avoids algebraic loops.
You can simulate a system model that includes a feedthrough by augmenting the system. Augment the system using
the input by including input components in the state and using derivatives of those signals in the control input. You
can augment the system using the output by including the original output components in the state and using integrals
of those signals in the system output. However, there is no requirement for the system to have a state, so

𝑥′(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))

𝑦(𝑡) = ℎ(𝑡, 𝑥(𝑡))

and

𝑦(𝑡) = ℎ(𝑡, 𝑢(𝑡))

are both valid formulations. Here, 𝑡 is the time variable, 𝑥 is the system state, 𝑢 is the system input, and 𝑦 is the sytem
output. We call 𝑓 the state equation and ℎ the output equation. SimuPy can also handle discrete-time systems with
sample period ∆𝑡 of the form

𝑥[𝑘 + 1] = 𝑓([𝑘], 𝑥[𝑘], 𝑢(𝑘)])

𝑦[𝑘 + 1] = ℎ([𝑘], 𝑥[𝑘 + 1])

and

𝑦[𝑘 + 1] = ℎ([𝑘], 𝑢(𝑘))

where [𝑘] indicates signal values over the half-open interval (𝑘 ∆𝑡, (𝑘 + 1)∆𝑡] which are updated at time 𝑡 = 𝑘 ∆𝑡
for discrete-time systems and (𝑘) indicates a zero-order hold sample of the signal at time 𝑘 ∆𝑡 for continuous-time
systems. This formulation gives the expected results for models with only discrete-time sub-systems of the same
update rate ∆𝑡 which can be combined into a single system of the form

𝑥[𝑘 + 1] = 𝑓([𝑘], 𝑥[𝑘], 𝑢[𝑘])

𝑦[𝑘] = ℎ([𝑘], 𝑥[𝑘])

and makes sense in general for hybrid-time simulation.

7

SimuPy Documentation, Release 1.0.0

This formulation is also consistent with common linear, time-invariant (LTI) system algebras and transformations. For
example, the dynamics of the LTI system

𝑥′(𝑡) = 𝐴𝑥(𝑡) + 𝐵 𝑢(𝑡),

𝑦(𝑡) = 𝐼 𝑥(𝑡),

with state-feedback

𝑢(𝑡) = −𝐾 𝑥(𝑡),

are the same as the autonomous system

𝑥′(𝑡) = (𝐴−𝐵𝐾)𝑥(𝑡),

𝑦(𝑡) = 𝐼 𝑥(𝑡).

Similarly, timing transformations are consistent. The discrete-time equivalent of the continuous-time LTI system
above,

𝑥[𝑘 + 1] = Φ𝑥[𝑘] + Γ𝑢[𝑘],

𝑦[𝑘] = 𝐼 𝑥[𝑘],

will travel through the same state trajectory at times 𝑘 ∆𝑡 if both are subject to the same piecewise constant inputs and
the state and input matrices are related by the zero-order hold transformation

Φ = 𝑒𝐴Δ𝑡,

Γ =

∫︁ Δ𝑡

0

𝑒𝐴𝜏 𝑑𝜏𝐵.

The accuracy of these algebras and transformations are demonstrated in the discrete_lti.py example and are
incorporated into the test_block_diagram.py tests.

8 Chapter 2. Mathematical Formulation

CHAPTER 3

API Documentation

A system in a BlockDiagram needs to provide the following attributes:

• dim_state : the dimension of the state

• dim_input : the dimension of the input

• dim_output : the dimension of the output

• output_equation_function : A callable returning the system output.

If dim_state=0, then output_equation_function recieves the current time and input as arguments during
integration. If dim_state>0 then state_equation_function, taking the current time, state, and input and
returning the state derivative, must also be provided. In this case, output_equation_function recieves the
current time and state as arguments during integration.

If event_equation_function and update_equation_function are provided, discontinuities at zero-
crossing of event_equation_function are handled. The argument rules for event_equation_function
and update_equation_function during integration are the same as for output_equation_function
and state_equation_function, respectively. Generally, update_equation_function is used to change
what state_equation_function, output_equation_function, and event_equation_function
compute based on the occurance of the discontinuity. If dim_state>0, update_equation_function must
return the state immediately after the discontinuity.

The base system class takes a convenience input argument, dt. Passing dt>0 will determine the sample rate that the
outputs and state are computed; dt=0 is treated as a continuous-time system. In hybrid-time BlockDiagrams, the
system is automatically integrated piecewise to improve accuracy.

Future versions of SimuPy may support passing jacobian functions to ode solvers if all systems in the
BlockDiagram provide the appropriate necessary jacobian functions.

A quick overview of the of the modules:

block_diagram (docstrings) implements the BlockDiagram class to simulate interconnected systems.

systems (docstrings) provides a few base classes for purely numerical based systems.

utils (docstrings) provides utility functions, such as manipulating (numeric) systems and simulation results.

9

SimuPy Documentation, Release 1.0.0

systems.symbolic (docstrings) and discontinuities (docstrings) provides niceties for using symbolic
expressions to define systems.

array (docstrings) and matrices (docstrings) provide helper functions and classes for manipulating symbolic
arrays, matrices, and their systems.

utils.symbolic (docstrings) provides utility symbolic functions, such as manipulating symbolic systems.

3.1 block_diagram module

class simupy.block_diagram.BlockDiagram(*systems)
A block diagram of dynamical systems with their connections which can be numerically simulated.

Initialize a BlockDiagram, with an optional list of systems to start the diagram.

add_system(system)
Add a system to the block diagram

Parameters system (dynamical system) – System to add to BlockDiagram

computation_step(t, state, output=None, selector=True, do_events=False)
callable to compute system outputs and state derivatives

connect(from_system_output, to_system_input, outputs=[], inputs=[])
Connect systems in the block diagram.

Parameters

• from_system_output (dynamical system) – The system (already added to
BlockDiagram) from which outputs will be connected. Note that the outputs of a sys-
tem can be connected to multiple inputs.

• to_system_input (dynamical system) – The system (already added to Block-
Diagram) to which inputs will be connected. Note that any previous input connections will
be over-written.

• outputs (list-like, optional) – Selector index of the outputs to connect. If not
specified or of length 0, will connect all of the outputs.

• inputs (list-like, optional) – Selector index of the inputs to connect. If not
specified or of length 0, will connect all of the inputs.

create_input(to_system_input, channels=[], inputs=[])
Create or use input channels to use block diagram as a subsystem.

Parameters

• channels (list-like) – Selector index of the input channels to connect.

• to_system_input (dynamical system) – The system (already added to Block-
Diagram) to which inputs will be connected. Note that any previous input connections will
be over-written.

• inputs (list-like, optional) – Selector index of the inputs to connect. If not
specified or of length 0, will connect all of the inputs.

dim_output

dim_state

dt

event_equation_function_implementation(t, state, output=None)

10 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

initial_condition

output_equation_function(t, state, input_=None, update_memoryless_event=False)

prepare_to_integrate()

simulate(tspan, integrator_class=<class ’scipy.integrate._ode.ode’>, integrator_options={’atol’: 1e-
12, ’max_step’: 0.0, ’name’: ’dopri5’, ’nsteps’: 500, ’rtol’: 1e-06}, event_finder=<function
brentq>, event_find_options={’maxiter’: 100, ’rtol’: 8.881784197001252e-16, ’xtol’: 2e-
12})

Simulate the block diagram

Parameters

• tspan (list-like or float) – Argument to specify integration time-steps.

If a single time is specified, it is treated as the final time. If two times are specified, they
are treated as initial and final times. In either of these conditions, it is assumed that that
every time step from a variable time-step integrator will be stored in the result.

If more than two times are specified, these are the only times where the trajectories will be
stored.

• integrator_class (class, optional) – Class of integrator to use. Defaults
to scipy.integrate.ode. Must provide the following subset of the scipy.
integrate.ode API:

– __init__(derivative_callable(time, state))

– set_integrator(**kwargs)

– set_initial_value(state, time)

– set_solout(successful_step_callable(time, state))

– integrate(time)

– successful()

– y, t properties

• integrator_options (dict, optional) – Dictionary of keyword arguments to
pass to integrator_class.set_integrator.

• event_finder (callable, optional) – Interval root-finder function. Defaults to
scipy.optimize.brentq, and must take the equivalent positional arguments, f, a,
and b, and return x0, where a <= x0 <= b and f(x0) is the zero.

• event_find_options (dict, optional) – Dictionary of keyword arguments to
pass to event_finder. It must provide a key 'xtol', and it is expected that the exact
zero lies within x0 +/- xtol/2, as brentq provides.

state_equation_function(t, state, input_=None, output=None)

systems_event_equation_functions(t, state, output)

update_equation_function_implementation(t, state, input_=None, output=None)

class simupy.block_diagram.SimulationResult(dim_states, dim_outputs, tspan, n_sys, ini-
tial_size=0)

A simple class to collect simulation result trajectories.

t

Type array of times

x

3.1. block_diagram module 11

SimuPy Documentation, Release 1.0.0

Type array of states

y

Type array of outputs

e

Type array of events

allocate_space(t)

last_result(n=1, copy=False)

max_allocation = 128

new_result(t, x, y, e=None)

3.2 systems module

class simupy.systems.DynamicalSystem(state_equation_function=None, out-
put_equation_function=None,
event_equation_function=None, up-
date_equation_function=None, dim_state=0,
dim_input=0, dim_output=0, dt=0, ini-
tial_condition=None)

Bases: object

A dynamical system which models systems of the form:

xdot(t) = state_equation_function(t,x,u)
y(t) = output_equation_function(t,x)

or:

y(t) = output_equation_function(t,u)

These could also represent discrete-time systems, in which case xdot(t) represents x[k+1].

This can also model discontinuous systems. Discontinuities must occur on zero-crossings of the
event_equation_function, which take the same arguments as output_equation_function, de-
pending on dim_state. At the zero-crossing, update_equation_function is called with the same
arguments. If dim_state > 0, the return value of update_equation_function is used as the state of
the system immediately after the discontinuity.

Parameters

• state_equation_function (callable, optional) – The derivative (or update
equation) of the system state. Not needed if dim_state is zero.

• output_equation_function (callable, optional) – The output equation of
the system. A system must have an output_equation_function. If not set, uses full
state output.

• event_equation_function (callable, optional) – The function whose out-
put determines when discontinuities occur.

• update_equation_function (callable, optional) – The function called
when a discontinuity occurs.

12 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

• dim_state (int, optional) – Dimension of the system state. Optional, defaults to
0.

• dim_input (int, optional) – Dimension of the system input. Optional, defaults to
0.

• dim_output (int, optional) – Dimension of the system output. Optional, defaults
to dim_state.

• dt (float, optional) – Sample rate of the system. Optional, defaults to 0 representing
a continuous time system.

• initial_condition (array_like of numerical values, optional) –
Array or Matrix used as the initial condition of the system. Defaults to zeros of the same
dimension as the state.

dt

initial_condition

prepare_to_integrate()

validate()

class simupy.systems.LTISystem(*args, initial_condition=None, dt=0)
Bases: simupy.systems.DynamicalSystem

A linear, time-invariant system.

Construct an LTI system with the following input formats:

1. state matrix A, input matrix B, output matrix C for systems with state:

dx_dt = Ax + Bu
y = Hx

2. state matrix A, input matrix B for systems with state, assume full state output:

dx_dt = Ax + Bu
y = Ix

3. gain matrix K for systems without state:

y = Kx

The matrices should be numeric arrays of consistent shape. The class provides A, B, C and F, G, H aliases for
the matrices of systems with state, as well as a K alias for the gain matrix. The data alias provides the matrices
as a tuple.

A

B

C

F

G

H

K

data

3.2. systems module 13

SimuPy Documentation, Release 1.0.0

validate()

class simupy.systems.SwitchedSystem(state_equations_functions=None, out-
put_equations_functions=None,
event_variable_equation_function=None,
event_bounds=None, state_update_equation_function=None,
dim_state=0, dim_input=0, dim_output=0, ini-
tial_condition=None)

Bases: simupy.systems.DynamicalSystem

Provides a useful pattern for discontinuous systems where the state and output equations change depending on
the value of a function of the state and/or input (event_variable_equation_function). Most of the
usefulness comes from constructing the event_equation_function with a Bernstein basis polynomial
with roots at the boundaries. This class also provides logic for outputting the correct state and output equation
based on the event_variable_equation_function value.

Parameters

• state_equations_functions (array_like of callables, optional) –
The derivative (or update equation) of the system state. Not needed if dim_state is zero.
The array indexes the event-state and should be one more than the number of event bounds.
This should also be indexed to match the boundaries (i.e., the first function is used when the
event variable is below the first event_bounds value). If only one callable is provided, the
callable is used in each condition.

• output_equations_functions (array_like of callables,
optional) – The output equation of the system. A system must have an
output_equation_function. If not set, uses full state output. The array in-
dexes the event-state and should be one more than the number of event bounds. This should
also be indexed to match the boundaries (i.e., the first function is used when the event
variable is below the first event_bounds value). If only one callable is provided, the callable
is used in each condition.

• event_variable_equation_function (callable) – When the output of this
function crosses the values in event_bounds, a discontuity event occurs.

• event_bounds (array_like of floats) – Defines the boundary points the trigger
discontinuity events based on the output of event_variable_equation_function.

• state_update_equation_function (callable, optional) – When an event
occurs, the state update equation function is called to determine the state update. If not set,
uses full state output, so the state is not changed upon a zero-crossing of the event variable
function.

• dim_state (int, optional) – Dimension of the system state. Optional, defaults to
0.

• dim_input (int, optional) – Dimension of the system input. Optional, defaults to
0.

• dim_output (int, optional) – Dimension of the system output. Optional, defaults
to dim_state.

event_bounds

event_equation_function(*args)

output_equation_function(*args)

prepare_to_integrate()

state_equation_function(*args)

14 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

update_equation_function(*args)

validate()

simupy.systems.SystemFromCallable(incallable, dim_input, dim_output, dt=0)
Construct a memoryless system from a callable.

Parameters

• incallable (callable) – Function to use as the output_equation_function. Should
have signature (t, u) if dim_input > 0 or (t) if dim_input = 0.

• dim_input (int) – Dimension of input.

• dim_output (int) – Dimension of output.

simupy.systems.full_state_output(*args)
A drop-in output_equation_function for stateful systems that provide output the full state directly.

3.3 utils module

simupy.utils.array_callable_from_vector_trajectory(tt, x, unraveled, raveled)
Convert a trajectory into an interpolating callable that returns a 2D array. The unraveled, raveled pair map how
the array is filled in. See riccati_system example.

Parameters

• tt (1D array_like) – Array of m time indices of trajectory

• xx (2D array_like) – Array of m x n vector samples at the time indices. First dimen-
sion indexes time, second dimension indexes vector components

• unraveled (1D array_like) – Array of n unique keys matching xx.

• raveled (2D array_like) – Array where the elements are the keys from unraveled.
The mapping between unraveled and raveled is used to specify how the output array is filled
in.

Returns matrix_callable – The callable interpolating the trajectory with the specified shape.

Return type callable

simupy.utils.callable_from_trajectory(t, curves)
Use scipy.interpolate splprep to build cubic b-spline interpolating functions over a set of curves.

Parameters

• t (1D array_like) – Array of m time indices of trajectory

• curves (2D array_like) – Array of m x n vector samples at the time indices. First
dimension indexes time, second dimension indexes vector components

Returns interpolated_callable – Callable which interpolates the given curve/trajectories

Return type callable

simupy.utils.discrete_callable_from_trajectory(t, curves)
Build a callable that interpolates a discrete-time curve by returning the value of the previous time-step.

Parameters

• t (1D array_like) – Array of m time indices of trajectory

3.3. utils module 15

SimuPy Documentation, Release 1.0.0

• curves (2D array_like) – Array of m x n vector samples at the time indices. First
dimension indexes time, second dimension indexes vector components

Returns nearest_neighbor_callable – Callable which interpolates the given discrete-time
curve/trajectories

Return type callable

3.4 symbolic systems module

class simupy.systems.symbolic.DynamicalSystem(state_equation=None, state=None, in-
put_=None, output_equation=None,
constants_values={}, dt=0,
initial_condition=None,
code_generator=None,
code_generator_args={})

Bases: simupy.systems.DynamicalSystem

DynamicalSystem constructor, used to create systems from symbolic expressions.

Parameters

• state_equation (array_like of sympy Expressions, optional) –
Vector valued expression for the derivative of the state.

• state (array_like of sympy symbols, optional) – Vector of symbols rep-
resenting the components of the state, in the desired order, matching state_equation.

• input (array_like of sympy symbols, optional) – Vector of symbols rep-
resenting the components of the input, in the desired order. state_equation may depend on
the system input. If the system has no state, the output_equation may depend on the system
input.

• output_equation (array_like of sympy Expressions) – Vector valued ex-
pression for the output of the system.

• constants_values (dict) – Dictionary of constants substitutions.

• dt (float) – Sampling rate of system. Use 0 for continuous time systems.

• initial_condition (array_like of numerical values, optional) –
Array or Matrix used as the initial condition of the system. Defaults to zeros of the same
dimension as the state.

• code_generator (callable, optional) – Function to be used as code generator.

• code_generator_args (dict, optional) – Dictionary of keyword args to pass to
the code generator.

By default, the code generator uses a wrapper for sympy.lambdify. You can change it by passing the system
initialization arguments code_generator (the function) and additional keyword arguments to the generator
in a dictionary code_generator_args. You can change the defaults for future systems by changing the
module values. See the readme or docs for an example.

copy()

equilibrium_points(input_=None)

input

output_equation

16 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

prepare_to_integrate()

state

state_equation

update_input_jacobian_function()

update_output_equation_function()

update_state_equation_function()

update_state_jacobian_function()

class simupy.systems.symbolic.MemorylessSystem(input_=None, output_equation=None,
**kwargs)

Bases: simupy.systems.symbolic.DynamicalSystem

A system with no state.

With no input, can represent a signal (function of time only). For example, a stochastic signal could interpolate
points and use prepare_to_integrate to re-seed the data.

DynamicalSystem constructor

Parameters

• input (array_like of sympy symbols) – Vector of symbols representing the
components of the input, in the desired order. The output may depend on the system in-
put.

• output_equation (array_like of sympy Expressions) – Vector valued ex-
pression for the output of the system.

state

3.5 discontinuities module

class simupy.discontinuities.DiscontinuousSystem(state_equation=None,
state=None, input_=None,
output_equation=None, con-
stants_values={}, dt=0,
initial_condition=None,
code_generator=None,
code_generator_args={})

Bases: simupy.systems.symbolic.DynamicalSystem

A continuous-time dynamical system with a discontinuity. Must provide the following attributes in addition to
those of DynamicalSystem:

event_equation_function - A function called at each integration time- step and stored in simulation
results. Takes input and state, if stateful. A zero-crossing of this output triggers the discontinuity.

event_equation_function - A function that is called when the discontinuity occurs. This is
generally used to change what state_equation_function, output_equation_function, and
event_equation_function compute based on the occurance of the discontinuity. If stateful, returns
the state immediately after the discontinuity.

DynamicalSystem constructor, used to create systems from symbolic expressions.

Parameters

3.5. discontinuities module 17

SimuPy Documentation, Release 1.0.0

• state_equation (array_like of sympy Expressions, optional) –
Vector valued expression for the derivative of the state.

• state (array_like of sympy symbols, optional) – Vector of symbols rep-
resenting the components of the state, in the desired order, matching state_equation.

• input (array_like of sympy symbols, optional) – Vector of symbols rep-
resenting the components of the input, in the desired order. state_equation may depend on
the system input. If the system has no state, the output_equation may depend on the system
input.

• output_equation (array_like of sympy Expressions) – Vector valued ex-
pression for the output of the system.

• constants_values (dict) – Dictionary of constants substitutions.

• dt (float) – Sampling rate of system. Use 0 for continuous time systems.

• initial_condition (array_like of numerical values, optional) –
Array or Matrix used as the initial condition of the system. Defaults to zeros of the same
dimension as the state.

• code_generator (callable, optional) – Function to be used as code generator.

• code_generator_args (dict, optional) – Dictionary of keyword args to pass to
the code generator.

By default, the code generator uses a wrapper for sympy.lambdify. You can change it by passing the system
initialization arguments code_generator (the function) and additional keyword arguments to the generator
in a dictionary code_generator_args. You can change the defaults for future systems by changing the
module values. See the readme or docs for an example.

dt

event_equation_function(*args, **kwargs)

update_equation_function(*args, **kwargs)

class simupy.discontinuities.MemorylessDiscontinuousSystem(input_=None, out-
put_equation=None,
**kwargs)

Bases: simupy.discontinuities.DiscontinuousSystem, simupy.systems.symbolic.
MemorylessSystem

DynamicalSystem constructor

Parameters

• input (array_like of sympy symbols) – Vector of symbols representing the
components of the input, in the desired order. The output may depend on the system in-
put.

• output_equation (array_like of sympy Expressions) – Vector valued ex-
pression for the output of the system.

class simupy.discontinuities.SwitchedOutput(event_variable_equation,
event_bounds_expressions,
state_equations=None,
output_equations=None,
state_update_equation=None, **kwargs)

Bases: simupy.discontinuities.SwitchedSystem, simupy.discontinuities.
MemorylessDiscontinuousSystem

A memoryless discontinuous system to conveninetly construct switched outputs.

18 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

SwitchedSystem constructor, used to create switched systems from symbolic expressions. The parameters below
are in addition to parameters from the systems.symbolic.DynamicalSystems constructor.

Parameters

• event_variable_equation (sympy Expression) – Expression representing the
event_equation_function

• event_bounds_expressions (list-like of sympy Expressions or
floats) – Ordered list-like values which define the boundaries of events (relative to
event_variable_equation).

• state_equations (array_like of sympy Expressions, optional) –
The state equations of the system. The first dimension indexes the event-state and should
be one more than the number of event bounds. This should also be indexed to match the
boundaries (i.e., the first expression is used when the event_variable_equation is below the
first event_bounds value). The second dimension is dim_state of the system. If only 1-D,
uses single equation for every condition.

• output_equations (array_like of sympy Expressions, optional) –
The output equations of the system. The first dimension indexes the event-state and should
be one more than the number of event bounds. This should also be indexed to match the
boundaries (i.e., the first expression is used when the event_variable_equation is below the
first event_bounds value). The second dimension is dim_output of the system. If only 1-D,
uses single equation for every condition.

• state_update_equation (sympy Expression) – Expression representing the
state_update_equation_function

class simupy.discontinuities.SwitchedSystem(event_variable_equation,
event_bounds_expressions,
state_equations=None,
output_equations=None,
state_update_equation=None, **kwargs)

Bases: simupy.systems.SwitchedSystem, simupy.discontinuities.
DiscontinuousSystem

SwitchedSystem constructor, used to create switched systems from symbolic expressions. The parameters below
are in addition to parameters from the systems.symbolic.DynamicalSystems constructor.

Parameters

• event_variable_equation (sympy Expression) – Expression representing the
event_equation_function

• event_bounds_expressions (list-like of sympy Expressions or
floats) – Ordered list-like values which define the boundaries of events (relative to
event_variable_equation).

• state_equations (array_like of sympy Expressions, optional) –
The state equations of the system. The first dimension indexes the event-state and should
be one more than the number of event bounds. This should also be indexed to match the
boundaries (i.e., the first expression is used when the event_variable_equation is below the
first event_bounds value). The second dimension is dim_state of the system. If only 1-D,
uses single equation for every condition.

• output_equations (array_like of sympy Expressions, optional) –
The output equations of the system. The first dimension indexes the event-state and should
be one more than the number of event bounds. This should also be indexed to match the
boundaries (i.e., the first expression is used when the event_variable_equation is below the

3.5. discontinuities module 19

SimuPy Documentation, Release 1.0.0

first event_bounds value). The second dimension is dim_output of the system. If only 1-D,
uses single equation for every condition.

• state_update_equation (sympy Expression) – Expression representing the
state_update_equation_function

event_bounds_expressions

event_variable_equation

output_equations

prepare_to_integrate()

state_equations

state_update_equation

validate(from_self=False)

3.6 array module

class simupy.array.SymAxisConcatenatorMixin
Bases: object

A mix-in to convert numpy AxisConcatenator classes to use with sympy N-D arrays.

static concatenate(*args, **kwargs)

makemat
alias of sympy.matrices.immutable.ImmutableDenseMatrix

class simupy.array.SymCClass
Bases: simupy.array.SymAxisConcatenatorMixin, numpy.lib.index_tricks.CClass

class simupy.array.SymRClass
Bases: simupy.array.SymAxisConcatenatorMixin, numpy.lib.index_tricks.RClass

simupy.array.empty_array()
Construct an empty array, which is often needed as a place-holder

3.7 matrices module

simupy.matrices.block_matrix(blocks)
Construct a matrix where the elements are specified by the block structure by joining the blocks appropriately.

Parameters blocks (two level deep iterable of sympy Matrix objects) –
The block specification of the matrices used to construct the block matrix.

Returns matrix – A matrix whose elements are the elements of the blocks with the specified block
structure.

Return type sympy Matrix

simupy.matrices.construct_explicit_matrix(name, n, m, symmetric=False, diagonal=0, dy-
namic=False, **kwass)

construct a matrix of symbolic elements

Parameters

20 Chapter 3. API Documentation

SimuPy Documentation, Release 1.0.0

• name (string) – Base name for variables; each variable is name_ij, which admitedly only
works clearly for n,m < 10

• n (int) – Number of rows

• m (int) – Number of columns

• symmetric (bool, optional) – Use to enforce a symmetric matrix (repeat symbols
above/below diagonal)

• diagonal (bool, optional) – Zeros out off diagonals. Takes precedence over sym-
metry.

• dynamic (bool, optional) – Whether to use sympy.physics.mechanics dynamicsym-
bol. If False, use sp.symbols

• kwargs (dict) – remaining kwargs passed to symbol function

Returns matrix – The Matrix containing explicit symbolic elements

Return type sympy Matrix

simupy.matrices.matrix_subs(*subs)
Generate an object that can be passed into sp.subs from matrices, replacing each element in from_matrix with
the corresponding element from to_matrix

There are three ways to use this function, depending on the input: 1. A single matrix-level subsitution -
from_matrix, to_matrix 2. A list or tuple of (from_matrix, to_matrix) 2-tuples 3. A dictionary of {from_matrix:
to_matrix} key-value pairs

simupy.matrices.system_from_matrix_DE(mat_DE, mat_var, mat_input=None, constants={})
Construct a symbolic DynamicalSystem using matrices. See riccati_system example.

Parameters

• mat_DE (sympy Matrix) – The matrix derivative expression (right hand side)

• mat_var (sympy Matrix) – The matrix state

• mat_input (list-like of input expressions, optional) – A list-like of
input expressions in the matrix differential equation

• constants (dict, optional) – Dictionary of constants substitutions.

Returns sys – A DynamicalSystem which can be used to numerically solve the matrix differential
equation.

Return type DynamicalSystem

3.8 symbolic utils module

simupy.utils.symbolic.augment_input(system, input_=[], update_outputs=True)
Augment input, useful to construct control-affine systems.

Parameters

• system (DynamicalSystem) – The sytsem to augment the input of

• input (array_like of symbols, optional) – The input to augment. Use to
augment only a subset of input components.

• update_outputs (boolean) – If true and the system provides full state output, will
also add the augmented inputs to the output.

3.8. symbolic utils module 21

SimuPy Documentation, Release 1.0.0

simupy.utils.symbolic.grad(f, basis, for_numerical=True)
Compute the symbolic gradient of a vector-valued function with respect to a basis.

Parameters

• f (1D array_like of sympy Expressions) – The vector-valued function to
compute the gradient of.

• basis (1D array_like of sympy symbols) – The basis symbols to compute the
gradient with respect to.

• for_numerical (bool, optional) – A placeholder for the option of numerically
computing the gradient.

Returns grad – The symbolic gradient.

Return type 2D array_like of sympy Expressions

simupy.utils.symbolic.lambdify_with_vector_args(args, expr, mod-
ules=({’ImmutableMatrix’: <class
’numpy.matrixlib.defmatrix.matrix’>},
’numpy’, {’Mod’: <ufunc ’remain-
der’>}))

A wrapper around sympy’s lambdify where process_vector_args is used so generated callable can take argu-
ments as either vector or individual components

Parameters

• args (list-like of sympy symbols) – Input arguments to the expression to call

• expr (sympy expression) – Expression to turn into a callable for numeric evaluation

• modules (list) – See lambdify documentation; passed directly as modules keyword.

simupy.utils.symbolic.process_vector_args(args)
A helper function to process vector arguments so callables can take vectors or individual components. Essen-
tially unravels the arguments.

class simupy.utils.symbolic.sinc
Bases: sympy.core.function.AppliedUndef

default_assumptions = {}

class simupy.utils.symbolic.step
Bases: sympy.core.function.AppliedUndef

default_assumptions = {}

22 Chapter 3. API Documentation

Python Module Index

s
simupy.array, 20
simupy.block_diagram, 10
simupy.discontinuities, 17
simupy.matrices, 20
simupy.systems, 12
simupy.systems.symbolic, 16
simupy.utils, 15
simupy.utils.symbolic, 21

23

SimuPy Documentation, Release 1.0.0

24 Python Module Index

Index

A
A (simupy.systems.LTISystem attribute), 13
add_system() (simupy.block_diagram.BlockDiagram

method), 10
allocate_space() (simupy.block_diagram.SimulationResult

method), 12
array_callable_from_vector_trajectory()

(in module simupy.utils), 15
augment_input() (in module simupy.utils.symbolic),

21

B
B (simupy.systems.LTISystem attribute), 13
block_matrix() (in module simupy.matrices), 20
BlockDiagram (class in simupy.block_diagram), 10

C
C (simupy.systems.LTISystem attribute), 13
callable_from_trajectory() (in module

simupy.utils), 15
computation_step()

(simupy.block_diagram.BlockDiagram
method), 10

concatenate() (simupy.array.SymAxisConcatenatorMixin
static method), 20

connect() (simupy.block_diagram.BlockDiagram
method), 10

construct_explicit_matrix() (in module
simupy.matrices), 20

copy() (simupy.systems.symbolic.DynamicalSystem
method), 16

create_input() (simupy.block_diagram.BlockDiagram
method), 10

D
data (simupy.systems.LTISystem attribute), 13
default_assumptions (simupy.utils.symbolic.sinc

attribute), 22

default_assumptions (simupy.utils.symbolic.step
attribute), 22

dim_output (simupy.block_diagram.BlockDiagram at-
tribute), 10

dim_state (simupy.block_diagram.BlockDiagram at-
tribute), 10

DiscontinuousSystem (class in
simupy.discontinuities), 17

discrete_callable_from_trajectory() (in
module simupy.utils), 15

dt (simupy.block_diagram.BlockDiagram attribute), 10
dt (simupy.discontinuities.DiscontinuousSystem at-

tribute), 18
dt (simupy.systems.DynamicalSystem attribute), 13
DynamicalSystem (class in simupy.systems), 12
DynamicalSystem (class in

simupy.systems.symbolic), 16

E
e (simupy.block_diagram.SimulationResult attribute), 12
empty_array() (in module simupy.array), 20
equilibrium_points()

(simupy.systems.symbolic.DynamicalSystem
method), 16

event_bounds (simupy.systems.SwitchedSystem at-
tribute), 14

event_bounds_expressions
(simupy.discontinuities.SwitchedSystem at-
tribute), 20

event_equation_function()
(simupy.discontinuities.DiscontinuousSystem
method), 18

event_equation_function()
(simupy.systems.SwitchedSystem method),
14

event_equation_function_implementation()
(simupy.block_diagram.BlockDiagram
method), 10

event_variable_equation

25

SimuPy Documentation, Release 1.0.0

(simupy.discontinuities.SwitchedSystem at-
tribute), 20

F
F (simupy.systems.LTISystem attribute), 13
full_state_output() (in module simupy.systems),

15

G
G (simupy.systems.LTISystem attribute), 13
grad() (in module simupy.utils.symbolic), 21

H
H (simupy.systems.LTISystem attribute), 13

I
initial_condition

(simupy.block_diagram.BlockDiagram at-
tribute), 10

initial_condition
(simupy.systems.DynamicalSystem attribute),
13

input (simupy.systems.symbolic.DynamicalSystem at-
tribute), 16

K
K (simupy.systems.LTISystem attribute), 13

L
lambdify_with_vector_args() (in module

simupy.utils.symbolic), 22
last_result() (simupy.block_diagram.SimulationResult

method), 12
LTISystem (class in simupy.systems), 13

M
makemat (simupy.array.SymAxisConcatenatorMixin at-

tribute), 20
matrix_subs() (in module simupy.matrices), 21
max_allocation (simupy.block_diagram.SimulationResult

attribute), 12
MemorylessDiscontinuousSystem (class in

simupy.discontinuities), 18
MemorylessSystem (class in

simupy.systems.symbolic), 17

N
new_result() (simupy.block_diagram.SimulationResult

method), 12

O
output_equation (simupy.systems.symbolic.DynamicalSystem

attribute), 16

output_equation_function()
(simupy.block_diagram.BlockDiagram
method), 11

output_equation_function()
(simupy.systems.SwitchedSystem method),
14

output_equations (simupy.discontinuities.SwitchedSystem
attribute), 20

P
prepare_to_integrate()

(simupy.block_diagram.BlockDiagram
method), 11

prepare_to_integrate()
(simupy.discontinuities.SwitchedSystem
method), 20

prepare_to_integrate()
(simupy.systems.DynamicalSystem method), 13

prepare_to_integrate()
(simupy.systems.SwitchedSystem method),
14

prepare_to_integrate()
(simupy.systems.symbolic.DynamicalSystem
method), 16

process_vector_args() (in module
simupy.utils.symbolic), 22

S
simulate() (simupy.block_diagram.BlockDiagram

method), 11
SimulationResult (class in simupy.block_diagram),

11
simupy.array (module), 20
simupy.block_diagram (module), 10
simupy.discontinuities (module), 17
simupy.matrices (module), 20
simupy.systems (module), 12
simupy.systems.symbolic (module), 16
simupy.utils (module), 15
simupy.utils.symbolic (module), 21
sinc (class in simupy.utils.symbolic), 22
state (simupy.systems.symbolic.DynamicalSystem at-

tribute), 17
state (simupy.systems.symbolic.MemorylessSystem at-

tribute), 17
state_equation (simupy.systems.symbolic.DynamicalSystem

attribute), 17
state_equation_function()

(simupy.block_diagram.BlockDiagram
method), 11

state_equation_function()
(simupy.systems.SwitchedSystem method),
14

26 Index

SimuPy Documentation, Release 1.0.0

state_equations (simupy.discontinuities.SwitchedSystem
attribute), 20

state_update_equation
(simupy.discontinuities.SwitchedSystem at-
tribute), 20

step (class in simupy.utils.symbolic), 22
SwitchedOutput (class in simupy.discontinuities), 18
SwitchedSystem (class in simupy.discontinuities), 19
SwitchedSystem (class in simupy.systems), 14
SymAxisConcatenatorMixin (class in

simupy.array), 20
SymCClass (class in simupy.array), 20
SymRClass (class in simupy.array), 20
system_from_matrix_DE() (in module

simupy.matrices), 21
SystemFromCallable() (in module

simupy.systems), 15
systems_event_equation_functions()

(simupy.block_diagram.BlockDiagram
method), 11

T
t (simupy.block_diagram.SimulationResult attribute), 11

U
update_equation_function()

(simupy.discontinuities.DiscontinuousSystem
method), 18

update_equation_function()
(simupy.systems.SwitchedSystem method),
14

update_equation_function_implementation()
(simupy.block_diagram.BlockDiagram
method), 11

update_input_jacobian_function()
(simupy.systems.symbolic.DynamicalSystem
method), 17

update_output_equation_function()
(simupy.systems.symbolic.DynamicalSystem
method), 17

update_state_equation_function()
(simupy.systems.symbolic.DynamicalSystem
method), 17

update_state_jacobian_function()
(simupy.systems.symbolic.DynamicalSystem
method), 17

V
validate() (simupy.discontinuities.SwitchedSystem

method), 20
validate() (simupy.systems.DynamicalSystem

method), 13
validate() (simupy.systems.LTISystem method), 13

validate() (simupy.systems.SwitchedSystem method),
15

X
x (simupy.block_diagram.SimulationResult attribute), 11

Y
y (simupy.block_diagram.SimulationResult attribute), 12

Index 27

	SimuPy
	Installation
	Contributing

	Mathematical Formulation
	API Documentation
	block_diagram module
	systems module
	utils module
	symbolic systems module
	discontinuities module
	array module
	matrices module
	symbolic utils module

	Python Module Index

